Multivariate model specification for fMRI data.
نویسندگان
چکیده
We present a general method-denoted MoDef-to help specify (or define) the model used to analyze brain imaging data. This method is based on the use of the multivariate linear model on a training data set. We show that when the a priori knowledge about the expected brain response is not too precise, the method allows for the specification of a model that yields a better sensitivity in the statistical results. This obviously relies on the validity of the a priori information, in our case the representativity of the training set, an issue addressed using a cross-validation technique. We propose a fast implementation that allows the use of the method on large data sets as found with functional Magnetic Resonance Images. An example of application is given on an experimental fMRI data set that includes nine subjects who performed a mental computation task. Results show that the method increases the statistical sensitivity of fMRI analyses.
منابع مشابه
Combined MEG and fMRI model
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملCortex-based independent component analysis of fMRI time series.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have...
متن کاملOn the Generalizability of Linear and Non-Linear Region of Interest-Based Multivariate Regression Models for fMRI Data
In contrast to conventional, univariate analysis, various types of multivariate analysis have been applied to functional magnetic resonance imaging (fMRI) data. In this paper, we compare two contemporary approaches for multivariate regression on task-based fMRI data: linear regression with ridge regularization and non-linear symbolic regression using genetic programming. The data for this proje...
متن کاملStatistical Analysis Methods for the fMRI Data
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2002